In vivo polymerization and manufacturing of wires and supercapacitors in plants.

نویسندگان

  • Eleni Stavrinidou
  • Roger Gabrielsson
  • K Peter R Nilsson
  • Sandeep Kumar Singh
  • Juan Felipe Franco-Gonzalez
  • Anton V Volkov
  • Magnus P Jonsson
  • Andrea Grimoldi
  • Mathias Elgland
  • Igor V Zozoulenko
  • Daniel T Simon
  • Magnus Berggren
چکیده

Electronic plants, e-Plants, are an organic bioelectronic platform that allows electronic interfacing with plants. Recently we have demonstrated plants with augmented electronic functionality. Using the vascular system and organs of a plant, we manufactured organic electronic devices and circuits in vivo, leveraging the internal structure and physiology of the plant as the template, and an integral part of the devices. However, this electronic functionality was only achieved in localized regions, whereas new electronic materials that could be distributed to every part of the plant would provide versatility in device and circuit fabrication and create possibilities for new device concepts. Here we report the synthesis of such a conjugated oligomer that can be distributed and form longer oligomers and polymer in every part of the xylem vascular tissue of a Rosa floribunda cutting, forming long-range conducting wires. The plant's structure acts as a physical template, whereas the plant's biochemical response mechanism acts as the catalyst for polymerization. In addition, the oligomer can cross through the veins and enter the apoplastic space in the leaves. Finally, using the plant's natural architecture we manufacture supercapacitors along the stem. Our results are preludes to autonomous energy systems integrated within plants and distribute interconnected sensor-actuator systems for plant control and optimization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Performance of polyaniline/manganese oxide-MWCNT Nanocomposites as Supercapacitors

Composite electrodes of polyaniline/MnO2-Multi walled carbon nanotube (PANI/MnO2-MWCNT), MnO2-MWCNT nanocomposites and MWCNT was produced by the in situ direct coating approach. The supercapacitor performance of the nanocomposites was studied by Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The electrochemical properties of electrodes were also investig...

متن کامل

Mutant Profilin1 Aggregation in Amyotrophic Lateral Sclerosis: An in Vivo Biochemical Analysis

Introduction: Profilin1 (PFN1) is a ubiquitously expressed protein known for its function as a regulator of actin polymerization and dynamics. A recent discovery linked mutant PFN1 to Amyotrophic Lateral Sclerosis (ALS), which is a fatal and progressive motor neuron disease. We have also demonstrated that Gly118Val mutation in PFN1 is a cause of ALS, and the formation of aggregates containing m...

متن کامل

Inhibition of Heme Polymerization, the Mechanism of Antimalarial Activity in Phlomis caucasica Rech.f. (Lamiaceae)

Background: Malaria is one of the most important parasitic diseases in the world caused by Plasmodium species. The malaria parasite digests hemoglobin in vacuole to amino acids and heme. Plasmodium has got several detoxification mechanisms to protect itself from toxic heme. The most important mechanism is heme polymerization. Identifying compounds that inhibit heme polymerization is an approach...

متن کامل

Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors

In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...

متن کامل

The Effect of the Crocus Sativus L. Carotenoid, Crocin, on the Polymerization of Microtubules, in Vitro

Objective(s): Crocin, as the main carotenoid of saffron, has shown anti-tumor activity both in vitro and in vivo. Crocin might interact with cellular proteins and modulate their functions, but the exact target of this carotenoid and the other compounds of the saffron have not been discovered yet. Microtubular proteins, as one of the most important proteins inside the cells, have several functio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 114 11  شماره 

صفحات  -

تاریخ انتشار 2017